Roll No.:....

## 320515(20)

FPR-MAY

B. E. (Fifth Semester) Examination, 2020

(Old Scheme)

(Civil Engg. Branch)

## NUMERICAL METHODS and COMPUTER PROGRAMMING

Time Allowed: Three hours

Maximum Marks: 80

Minimum Pass Marks: 28

Note: Part (a) of each question is compulsory.

Attempt any two part (b), (c) and (d) of each questions.

## I-tinU Write a Cath penyson to draw a simple T-sectings

- 1. (a) Write the differences between C and C++.
- 2
- (b) Explain all loop statement with syntax and example.

/ The latest

|    | [2]                                                                                   |   |
|----|---------------------------------------------------------------------------------------|---|
|    | (c) Write a C++ program to determine the support reactions in a simply supported beam |   |
|    | subjected to any number of points loads.                                              | 7 |
|    | (d) Write a C++ program to print largest of three numbers.                            | 7 |
|    | Unit-II                                                                               |   |
| 2. | (a) What is function?                                                                 | 2 |
|    | (b) What is the difference between call by value and                                  |   |
|    | call by reference?                                                                    | 7 |
|    | (c) Write a C++ program to perform addition of two matrices.                          | 7 |
|    | (d) Write a C++ program to determine moment of                                        |   |
|    | resistance of singly reinforced beam.                                                 | 7 |
|    | Unit-III                                                                              |   |
| 3. | (a) What is graphics function?                                                        | 2 |
|    | (b) Write a C++ program to draw a simple T-section.                                   | 7 |
|    | (c) Write a graphics program to draw the cross-section                                |   |
|    | of a singly reinforced beam of rectangular cross                                      |   |
|    | section.                                                                              | 7 |

320515(20)

| (d) Explain the following graphics functions:                         | 7   |
|-----------------------------------------------------------------------|-----|
| (i) Rectangle ()                                                      |     |
| (ii) Line ()                                                          |     |
| (iii) Closegraph ( )                                                  |     |
| (iv) arc ()                                                           |     |
| (v) putpixel ()                                                       |     |
| (vi) initgraph ( )                                                    |     |
| (vii)bar ()                                                           |     |
| Unit-IV                                                               |     |
| (a) What are the various method of solving linear                     |     |
| algebraic equations?                                                  | . 2 |
| (b) Solve the following equation by Gauss Elimination                 |     |
| method:                                                               | 7   |
| evice points it into the boutest and segment must be $x + y + z = 10$ |     |
| 3x + 2y + 3z = 18                                                     |     |
| x + 4y + 9z = 16                                                      |     |
| (c) Solve the following set of simultaneous equation using            |     |
| Gauss-Jordan Method:                                                  | 7   |

320515(20)

4]

 $2x_1 + 3x_2 + 4x_3 = -10$ 

 $3x_1 + 4x_2 + 5x_3 = 13$ 

 $x_1 - 2x_2 + 2x_3 = 11$ 

(d) Using the following table to fit a curve of the form

 $y = ax^b$ .

20 30 40 50 60 70 8

Tenoliuge auretenia 2

7

20]

 $y = 1.06 \ 1.33 \ 1.52 \ 1.68 \ 1.81 \ 1.91 \ 2.01 \ 2.11$ 

result mayles to horizon structs out one and we be

5. (a) Prove that:

 $E = e^{hD}$ 

(b) Using Runge-Kutta Method of fourth order, solve

 $\frac{dy}{dx} = \frac{y^2 - x^2}{y^2 + x^2} \text{ with } y(0) = 1 \text{ at } x = 0.2, 0.4$ 

(c) Given  $\frac{dy}{dx} = \frac{1}{2} (1 + x^2) y^2$  and y(0) = 1,

y(0.1) = 1.06, y(0.2) = 1.12, y(0.3) = 1.21

320515(20)

[5]

evaluate y(0.4) by Milne's predictor corrector method.

7

(d) Write a C++ program to solve an ordinary differential equation by Runge-Kutta Fourth order method.

320515(20)